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We calculate, using a tube model, the enhancement of adhesive strength between a surface-attached chain 
and a matrix (in the glassy phase) that is polymerized in situ. The conformational relaxation caused by 
the change in the chains' local environment may or may not be dominated by entanglements. We conclude 
that in the favourable scenario of slow relaxation dynamics and rapid polymerization and subsequent 
quench (by glassification), the adhesive strength may be increased up to a factor (a/b) 1/3, where a is the 
tube diameter and b is the Kuhn length for the attached chain. 
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I N T R O D U C T I O N  

The adhesion of polymer interfaces is a problem of 
practical importance, with applications in coatings and 
reinforcement. This has motivated a number of experi- 
mental and theoretical studies 1~. Adhesion of bulk 
polymer to a non-polymeric surface may be improved 
by the chemical attachment of some chains to the surface, 
which gives the interface a similar character to a 
polymer/polymer weld. In the latter case, chain dynamics 
prior to glassification affect the adhesive strength signifi- 
cantlyS'6; we expect the same of end-tethered chains. One 
method of achieving a strong interface is to attach chains 
to the solid surface in a solution of their own monomers, 
which is then polymerized around the tethered chains. 
In this paper, we consider the effects of polymerization 
kinetics on the adhesive strength of this interface type. 

Our model assumes a chain terminally attached to an 
infinite, neutral, fiat surface surrounded by a matrix of 
chemically identical chains. The surface coverage a is 
small, o < N  -6/5, such that there are no interactions 
between neighbouring chains; the average properties of 
a single chain are considered. We concentrate on 
adhesion in the regimes where failure of the interface is 
dominated by the pull-out of the attached chain from the 
matrix rather than chain scission. 

An interface of this type is relatively simple to model 
as it is strictly fiat, there is only one crossing per attached 
polymer and, with a low surface coverage, crazing 7 is 
unlikely. 

We consider how the pull-out energy may be enhanced 
by polymerizing the matrix in situ. During polymer- 
ization the attached chain collapses from a swollen to an 
ideal conformation, suffering a consequent reduction in 
entangled path length. Depending on polymerization rate 
and the time at which the system is quenched by 
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glassification, the collapse itself may or may not be 
dominated by entanglements. By calculating the time- 
scale of conformation relaxation, limits can be given for 
the polymerization rate and quench time so as to capture 
the maximum amount of swollen conformation, thus 
enhancing interface adhesion. 

Our work has two parts. First we present a model for 
the adhesive energy contribution of end-tethered chains 
of general conformation. This differs from previous 
hypotheses a and considers failure at both constant stress 
and constant interface velocity. Secondly, we calculate 
how the bulk polymerization affects the dynamics of the 
tethered chains, and which conformations result on 
glassification. 

TUBE M O D E L  FOR ADHESION 

Consider a polymer of N A monomers, terminally attached 
to a neutral fiat surface, in a network of polymers each 
of N s monomers, below the glass transition temperature 
(Figure la). For simplicity, we assume that the persistence 
length coincides with the monomer length, b. Providing 
that Ns> No, the network polymers can be represented 
as a topologically constraining tube for polymer A 9, thus 
restricting motion on scales larger than Nc to along the 
tube axis. In this paper N~ refers to the entanglement 
number most generally; we allow for non-equilibrium, 
semidilute chain conformations. The tube length is given 
by: 

L = (NA/N~)a (1) 

where a is the tube diameter. Presented here are two 
limiting cases of a tube model for the interface adhesion 
energy, in the non-inertial limit. Our model is different 
from that of Evans s as we choose not to employ the 
Einstein relationship below the glass transition tempera- 
ture. The pull-out energy of polymer A, Ep, is defined as 
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Figure 1 (a) Polymer A attached to a flat surface, inside its tube, 
below the glass transition temperature. The number  of monomers  
between entanglements  Ne is indicated, and is not necessarily the 
equilibrium value. (b) The monomers  of the chain are pulled out as a 
whole, with either constant  force or constant  velocity. (c) The chain is 
pulled out from the tube and fully stretches from a mobilization site 
that proceeds down the tube. (d) If the mobilization site is able to reach 
the end of the tube, further pull-out occurs as in (b) but  with a reduced 
entanglement number  (a/b). (e) If in the case of constant  velocity, the 
tension at the front of the tube exceeds Fs~, the chain breaks at that  
point. (f) If in the case of constant  force, the critical force of the mobilized 
monomers  (inside the tube) equals the applied force, the pull-out comes 
to a halt 

to elastic forces is: 

(vN 
rf  = - -  (3) 

3kaT/b 

with kB and T the Boltzmann constant and temperature 
respectively. If rf<<l then chain deformation in the 
pull-out process will be small. If rf > 1 then the chain will 
totally stretch out during the pull-out process. This 
criterion forms the limiting cases of our model. Partial 
deformation is rather more complex to model and will 
not be dealt with here. In either case the elastic 
contribution to the pull-out energy will be small with 
respect to the frictional contribution, and thus it will be 
neglected. For  both limits of our model we consider the 
conditions of: 

(i) constant rate of surface/network separation, Vo; 
(ii) constant force across the surface/network inter- 

face, Fo. 
In all cases vo=fJ( and Fo=f¢ are respectively the 
absolute minimum velocity and force required for 
mobilization. Table 1 shows the results for these cases 
and their limits for validity, using equations (1) and (2). 
F~ denotes the tension in the chain at which scission 
occurs. The tube is considered to be long (NA>>Ne) so 
that end effects are neglected. Also the scission energy is 
considered to be negligible with respect to pull-out 
energy. 

Cases A and B (Figure lb) have a process length of 
that of the tube, L. With constant pull-out velocity, the 
frictional force experienced by the tube is proportional 
to the number of monomers residing inside it. The limits 
on v 0 dictate that all the chain monomers can be 
simultaneously mobilized and that there is only small 
deformation when the tension is maximum, at the start 
of pull-out. Similarly, the limits on Fo allow whole chain 
mobilization with no deformation; however, the tension 
at the front of the tube is constant throughout the 
process. 

In the cases of C and D (Figure lc) the chain tension 
increases as more monomers are mobilized from a site 
moving back into the tube. Thus, there is the possibility 
that the chain tension may, at some point, exceed the 

the work done in pulling the polymer totally from its tube: 

fo Ep = F(s) ds (2) 

F(s) is the tension of the chain at the attached end, at a 
pull-out distance s from the 'tube mouth '  such that 
s=O~d, and d is the total length associated with the 
particular pull-out process. In the tube, the frictional 
force on a monomer is f = (v, where v is its velocity and 
( is the monomeric friction constant. There is a minimum 
critical force for monomer mobilization,ft. Equations (1) 
and (2) are our link between chain conformation and 
adhesion. Either the 'process length' d or the maximum 
frictional force is related to the tube length (see below), 
which in turn is given by the generalized entanglement 
number, Ne. As this is defined as the number of monomers 
in a chain spanning a (fixed) tube diameter a, it is a direct 
function of chain conformation. 

For  a fully stretched chain segment of N monomers, 
with a velocity v relative to the tube, the ratio of frictional 

Table 1 

Pull-out energy, 
Case E v Limits on application 

A No deformation, (roaN 2 3kT 
v0<< constant  velocity 2Ne b~N A 

B No deformation, FoaN A 3kT 
constant  force NAfc < Fo<< - -  

N~ b 

C Full deformation, ~voaN 2 bNeF~c 
V o < - -  constant velocity 2No a(N A 

D Full deformation, { b N ~ l ) F ~ c b  3kT bN.F,o 
constant velocity \ a  "/2(v o J~ ~> b - -  v° > 
(scission) a~N A 

E Full deformation, fcaNA 
constant  force FoN Ab Fo > - -  

bN e 

F Full deformation, F2o b fcaNA 
constant  force Fo < 
(halting) f~ bNe 
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scission tension and break (Figure ld). The maximum 
chain tension arises when the mobilization site reaches 
the end of the tube. If this maximum tension is less than 
the scission tension, then further pull-out proceeds in a 
similar manner to case A except that, as the chain is fully 
stretched, N~--.(a/b) (Figure le). However, if the chain 
does undergo scission, the process length is proportional 
to Fs¢. 

With cases E and F, if the chain is to undergo scission, 
then it will do so at the start of pull-out. These cases are 
similar to C and D but, instead of scission occurring, if 
the critical friction of the mobilized monomers equals the 
applied force F o, the pull-out will halt (Figure l f ) .  In 
this case the process length is proportional to Fo. 

We include here for clarity the calculation of Ep for 
the two-stage pull-out process, case C: 

E p ~ V L ~  (NAb-L) ~ f o  ~ - sds+ ( L - s ) d s  
b (NAb-  L) ~ o 

b \ 2 " - 2 (4) 

It is worth noting the fact that cases A and C yield the 
same pull-out energy but only case C allows for partial 
pull-out before scission. 

We now need to find an expression for the generalized 
entanglement number. Formally a 2 is the mean-square 
displacement between entanglements at the nth and mth 
monomers, between which are n-m monomers of the 
attached chain. At time t during an arbitrary dynamical 
process, N~(t)= In-m[, such that: 

a 2 = (rR,(t)  - Rm(t)-] z ) (5) 

where R,(t) is the vector to monomer n from an arbitrarily 
defined origin, and is known, at least stochastically, for 
any chain dynamics we consider. To find N¢(t) we require 
the as yet undetermined function ([R,(t)-Rm(t)] 2) 
in the form F(In-ml,t),  and then rearrange to get 
Ne(t)=F-~(a2,t). We know a for a particular polymer 
at fixed density. We note here that a value of N~(t) less 
that its equilibrium value corresponds to a stretched 
polymer and an increased adhesive strength. 

POLYMERIZATION 

Now consider the solvent polymerization around the 
attached polymer, A. We use a simple, monodisperse, 
model of polymerization kinetics, whereby a chain grows 
by monomer addition: 

N,( t ) = N,( oo )[1 - - e x p ( -  t/Zpo,) ] (6) 

where Tpo, is the characteristic polymerization time. 
N~(oo) can be freely chosen as Ns(OO)= 1/~b, where ~b is 
the initiator concentration. During polymerization the 
polymer density of the solution increases, causing the 
swollen polymer to contract as its self-avoidance is 
screened 1°. At a time tq after polymerization initiation, 
the system is quenched by glassification, so there is no 
further relaxation: 

( [ R , ( t ) -  Rm(t)]2)> = constant t > tq (7) 

The outcome of the quenched polymerization is largely 
dictated by the ratio: 

r, =- zpol/z,~l (8) 

where "Cre 1 is the characteristic time for the relaxation 

dynamics of polymer A. In the simple case for which 
r, >> 1, the conformation of the chain reaches its Gaussian 
equilibrium; there is no adhesion enhancement in this 
case. We consider first regimes for which r,<< 1, which is 
equivalent to instantaneously 'switching' the environ- 
ment of polymer A from that of swollen to Gaussian 
statistics. Further, we present in this regime the two cases 
of solely entangled and unentangled dynamics. With 
respect to the degree of polymerization of the melt, the 
transition from the unentangled to the entangled regime 
is observed to be N = c~N e, where ~ ~ 2-7 depending on 
the polymer type and experimental quantities measured~ 1. 
The apparent ambiguity in requiring the melt to be 
unentangled, and the glassy phase to be entangled, can 
be rectified by employing the concept of constraint 
release. By considering polymer A as a long chain in a 
sea of short solvent polymers, it only effectively becomes 
entangled when Ns(OO)>(NAN2) 1/3 (ref. 12); however, 
constraint release is of course absent in the glassy phase. 
Thus the regime of solely unentangled dynamics in the 
melt requires the condition: 

7Ne < Ns( oo ) < ( N AN2e ) 1/3 (9) 

When considering the well entangled regime, Ns(oo) has 
to be greater than both limits in equation (9). Finally, we 
consider the more realistic regime where there is no 
restriction on r e (i.e. we can choose r,,,~ 1), so we have 
both entangled and unentangled dynamics present during 
polymerization. 

We do not present a full treatment of surface perturbed 
chain conformations here. We look at a chain with one 
end fixed in 'free solution', and later apply some results 
from the literature a 5 to make some estimates on how the 
surface affects chain conformation. 

re<< 1; unentangled Rouse dynamics 
The monomeric solution is rapidly polymerized around 

the attached chain 'switching on' a Gaussian environ- 
ment; the chain collapses towards a Gaussian conforma- 
tion via unentangled Rouse dynamics. 

Consider polymer A in motion subject to Rouse 
dynamics; that of connected Brownian beads 9. The 
motion of the connected beads, at positions (R 1, R 2 . . . . .  
RN)--{R,}, is described by the Langevin equation: 

d 2 3k, T 
(d~R,(t)=k~n2R,(t)+f,(t) k= bE (10) 

dt 

subject to the asymptotic boundary conditions: 

([R.(t)- Rm(t)] 2 ) = b 2 1 n  - ml 2v 

v=3/5  at t = 0 ;  v = l / 2  as t---~oo (11) 

( is the friction constant for a bead andf,( t )  is a random 
force. To get ([R,(t)-Rm(t)] 2) in the form F(t, [n--m[) 
we introduce (independent) normal coordinates Xp, such 
that: 

p= l  \ IrA / 

The unusual choice of normal modes is due to the 
constraint of the fixed, tethered chain end. This gives: 

oo pztln - ml 2 
([R,(t)-Rm(t)]E>=4o~=,[1-cos ( ~V- A ) ] ( I - X , ( t ' ] >  

(13) 
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Figure 2 The tube  length  at  the quench  time, for the case of a chain  
re laxing via unen tang led  Rouse  dynamics ,  and  rapid  po lymer iza t ion ;  
N A = 3 , 6 , 1 0 , 1 5  ( x  10 3 ) f rom b o t t o m  to top;  a =  l0  

solving the Langevin equation in <[Xp(t)]2> gives: 

N b 2 V/N1/5 

4~b 2 (NAX~ 2 

r P - 3 n 2 k a T \ T J  

1"~ [ ' -  2t'~ 1-] 
U] 

(14) 

where rp is the Rouse relaxation time, for the pth mode 
of the attached chain. The resulting expression for 
([R,(t)-R,.(t)] 2> in the limit of large N A may be 
approximated for qualitative purposes by replacing the 
trigonometric function in equation (12) by a quartic with 
matched turning points, and the exponential by a step 
function. The result indicates how the familiar Rouse t -  1/2 
relaxation is modified by the initially swollen statistics: 

([R.(t)-Rm(t)]2> 

4b 2 S 2 
T-z/s(~N~/5 - T-,/ ,o) 

n 2 N A 

x 4 - 2 - S  T-1/2+ - r  -1 +b2S (15) 
N A 3 N  A 

T>(S/2NA) 2 T=2t/z t  S-In-ml 

At t=tq, In-ml is replaced with N e and ([R,(tq) 
-R.,(tq)]2> is equated to a 2. The solution for 
Ne=F-l(a2,t)  has to be performed numerically. We 
know the boundary conditions on Ne(t) from equation 
(11) and can use them to find the maximum tube length 
enhancement factor given by: 

N~( ~ )/ N~(O ) = (a/b ) '/3 (16) 

remembering that the pull-out energy can be propor- 
tional to the tube length. Figure 2 illustrates the solution; 
the relative relaxation of L is (log-log) plotted against 
time for several values of N A. It is clear from the graph 
that, with increasing NA, the relaxation time becomes 
constant. This corresponds to high mode domination of 
the relaxation process. As one might expect, chain 

conformations that differ only on length scales much 
larger than the tube diameter do not differ greatly in 
their adhesive contributions. Of interest is how the tube 
diameter a affects the characteristic relaxation time, Ta. 
We define this relaxation time arbitrarily by: 

Ne(ra)=(gNe(O)+(l--q~)Ne(~ ) ~b=e- '  (17) 

and plot r, against a in Figure 3, using the full numerical 
solution. The power law ra~a;'  with 7=3.33 that is 
observed is what one would expect for Rouse relaxation 
(z~N2), dominated by the swollen conformation. If a 
becomes comparable to the tube length then the 
relaxation time becomes that of the whole chain and 
z ~ z  ~ a  °. The cross-over between the two power laws is 
seen as the curvature in Figure 3. Although the partially 
analytic solution gives a good approximation to the tube 
length relaxation, we found that the approximations were 
very sensitive to the inversion of equation (15) and gave 
the result 7=4.66, which appears to have no physical 
origin. 

r~<< 1; entangled Rouse dynamics 
When the tethered chains undergo most of their 

relaxation in a bath of long polymers, entanglements will 
dominate the relaxation itself. Contraction is dominated 
by the relaxation of the contour length, along the 
curvilinear axis of the tube, by entangled Rouse dynamics 
(Figure 4a). Only at much later times does contour length 
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Figure 3 The dependence of the characteristic relaxation time ~. on 
the tube diameter a (appearing at the quench), for the case of 
unentangled Rouse dynamics and rapid polymerization 
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Figure $ The extent  of tube length relaxation, via tube Rouse 
dynamics, at the quench time for the case of rapid polymerization; 
N^ = 10, 15, 20, 25, 30, 35 ( x 103) from bottom to top; a = 10 

fluctuation 9 become effective (Figure 4b). In fact, this 
only serves to relax the tube's conformation; thus (L(t)) 
and hence Ep will be unaffected. The contour length of 
the chain is given by: 

L(t) = SN(t)-- So(t) (18) 

where in the normal coordinate notation: 

S ,=2  ~ Ypsin(n(P-1/2!~+ nLCq (19) 
p = 1 \ NA ] NA 

is the position of the Rouse segment n along the 
curvilinear axis, where L~q is the equilibrium contour 
length. Solving the Langevin equation for (Yp(t)) gives: 

12 ~ ( -  1) p f -p2 t '~  
(L(t)>=Leq + ~ [ (g (0 ) ) -geq  ] p_~al ~ T -  e x p ~ J  

(20) 
(L(t))=(a~-lb)l/VNA v=3/5 at t=0;  v= l /2  as t--*~ 

In this case (L(t))  is dominated by the first mode 
(~80%) and thus has a much longer relaxation time 
than in the unentangled Rouse relaxation case. Again the 
tube length enhancement factor is (a/b) 1/3. A graph of 
(L(t)) is plotted in Figure 5 and illustrates the long 
relaxation time z, which in this case is not a function of 
tube diameter a, but of NA, z ~ (N,) a. 

General polymerization~relaxation 
We consider here the conformational relaxation of 

polymer A most generally; the ratio of Rouse relaxation/ 
polymerization time may be comparable, and relaxation 
starts before polymerization terminates. 

During polymerization polymer A experiences three 
distinct concentrations of solvent polymer; that of dilute, 
semidilute and concentrated solutions. The average 
concentration of solvent polymer, throughout polymer- 
ization, is given by: 

C(t)/C(oo ) = Ns(t)/N~(oo ) (21) 

where Ns(~ ) and C(~)  are respectively the values of 
solvent degree of polymerization and solution concentra- 
tion at full polymerization. The cross-over from dilute 
to semidilute solutions signifies the point at which the 
growing, swollen solvent polymers start to overlap. Thus 
at the overlap concentration C*, the local and average 
concentrations are equal, and given by: 

C* = Ns(t)/R3(t) Rs(t ) = bN3/S(t) (22) 

where Rs(t ) is the swollen coil diameter of the solvent 
polymer. The cross-over concentration C**, when going 
from semidilute to concentrated solutions, occurs when, 
for the solvent polymers, the ratio of chain intermolecular/ 
intramolecular interactions becomes greater than unity. 
It is calculated that, in the case of excluded-volume 
interaction only, C** ~ 1/n (ref. 9). As this is of order one 
and as, for reasonably large values of N~(oo), C* is small, 
then for simplicity we consider it a good approximation 
to treat the conformational relaxation in the semidilute 
regime only. 

This semidilute binary solution is characterized by 
three length scales. First, in a good solvent a chain 
predominantly interacts only with itself up to the scale 
of the screening length ~(t) (ref. 10), such that: 

~(t) ,~ b[C(t)/C(oo)] - 3/4 (23) 

The chain segment within the volume ~3(t) is swollen 
and contains g monomers, such that: 

g(t) = [~(t)/b] 5/3 (24) 

Secondly, we consider on which scales the solvent 
polymers act as a good solvent for polymer A. Using the 
concept that both polymer species are random walks of 
step length ¢(t), then the solvent polymers are a good 
solvent for chain segments containing more than n 
monomers, providing that1°: 

n(t)/g(t) > [Ns(t)/g(t)] 2 (25) 

Above length scales corresponding to this chain length, 
the attached chain will be swollen, even though they are 
screened at shorter length scales. 

Thirdly, for a good semidilute solution, the tube 
diameter a(t) is13'14: 

a(t) ~ [C(t)/C(oo)] - 3/4 (26) 

where we choose the prefactor to be a(oo), the tube 
diameter in the melt (i.e. full polymerization). The 
entanglement number is calculated by considering a 
random walk of step length ~(t) encompassing a volume 
[a(t)] 3 (ref. 13) and is: 

N=(t) = g(t)[a(t)/~(t)] 2 (27) 

However, the discussion so far has centred on the 
equilibrium semidilute solution, and we know our solution 
is non-equilibrium. This means that, although a length 
scale may be screened, it has not necessarily relaxed to 
its equilibrium conformation, and thus Ne(t) may be 
somewhat less than the value given in equation (27). 
More accurately, the entanglement number should be 
calculated self-consistently using equation (I 3) (summing 
over relaxing mode amplitudes), but this is beyond the 
scope of our calculation. 

It is also noted here that in this semidilute solution, 
the attached chain only becomes well entangled when 
N~(t) is greater than both o~Ne(t ) and [XAX2c(t)] 1/3. In 
this work we proceed with the simple analysis whereby 
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Figure 6 This is the 'relaxation map'  for polymer A, with parameter 
values NA= 10 4, Ns(oo)= 10 3, a = 5 .  The curves are defined by (A) the 
screening length, (B) the solvent polymer size and (C) the tube diameter. 
At a given time, modes that reside in the hatched region have not 
started to relax, those in the white region are relaxing by unentangled 
Rouse dynamics, those in the grey region are relaxing by entangled 
Rouse dynamics, and those in the black region, to our approximation 
of first mode domination, have temporarily stopped relaxing (i.e. they 
are inside the tube but the first mode is yet to relax) 

equations (26) and (27) are valid from the concentration 
at which the solvent polymers overlap. 

To translate an arbitrary segment of m monomers into 
the corresponding mode of polymer A we use the 
relationship 

Pm= N A/m (28) 

Substituting equations (24) and (25) into (28) we find 
that the modes of polymer A that are able to relax are 
given by the inequality: 

N A f N , ( t ) ~ - ' 3 / 4 < p < N a ( N , ( t )  "]5/, (29) 
N~(oo ) \ N~(~ )J \ N,(oo )J 

These are the modes that correspond to the length scales 
just screened by the growing solvent chains at time t. As 
a consequence, modes not only have different relaxation 
times, but also different relaxation starting times. The 
relaxation starting time, tp, of a mode p is given by 
rearranging equation (29) and substituting into the 
small-time approximation of equation (6), Tpol(t)/Tpol(O0) 
.~Ns(t)/Ns(oo ). This is valid in the first instance for 
the relaxation of significant modes, and secondly for 
reasonable high values of N~(~): 

(p/N A)4/5Zpol p > N A/S5/9(oo ) 

tp'~ [NA/pNZ(oo)]4/X3Zpo~ p<NA/NSs/9(oo) (30) 

The stated inequality in equation (30) dictates by which 
process (small- or large-scale screening) a mode is 
motivated to relax, and is given by the intersection of 
the two inequalities in equation (29). 

The tube affects the modes such that, if a mode number 
is less than the entanglement mode p~=NA/Ne(t), it 
relaxes by tube Rouse dynamics. Making the approxima- 
tion that, in the tube, conformational relaxation is 
brought about solely by the first mode, ifa mode satisfies: 

N A (N~(t) ~5/4 (31)  

P< N~(~) \Ns(~ ),/ 

further relaxation is coupled to that of the first mode. 
The three inequalities on p are represented pictorially 

in Figure 6. The different regions indicate the state and 
process of relaxation of a mode p, at a reduced time t/Zpo~. 
The entanglement number Ne(t) may be calculated in a 
similar way to the first scenario: using our 'relaxation 
map' a summation over current mode amplitudes 
([Xp(t)] 2) may be performed. However, if the system 
is quenched during polymerization, ([R.(t)-Rm(t)]2> 
must be equated to [a(t)] 2. To complement the relaxation 
map, the contribution of a particular decade of modes 
to the relaxation of polymer A on the length scale of the 
melt tube diameter is illustrated in Figure 7. This 
quantifies our earlier observation that the final entangled 
path length is dominated by the structure of modes such 
that p...NA/N c. The solution of Ne(t) is performed 
numerically, and is illustrated in Figure 8 by plotting 
L(t)/Leq against t/rpo I (where Leq is the equilibrium tube 
length in the melt), for a number of different values of 
rl/rpov We note that in the case of zl/Zpoj~ 1, there is 
negligible conformational relaxation during polymer- 
ization, taking us back to the rapid polymerization 
scenarios. However, polymerization on this timescale 
may well be impracticable. 

THE SURFACE 

The surface may affect both the statics and dynamics of 
the attached chain. Owing to the nature of fixing one 
end of the chain, the Rouse relaxation time is increased 
by a factor 4. To our knowledge there has not been a 
rigorous treatment of a single, swollen, terminally 
attached polymer at a surface. However, it has been 
calculated 15'16, for a single chain in O conditions, that 
the surface perturbs such that: 

(R2)=((RE)fxS + R 2 fs+2 R E fs 3 ( )]; ( )=)/ (32) 
where R is the end-to-end vector, z is the direction normal 
to the surface and fs denotes free solution. It is useful in 
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Figure 7 This graph shows the relative contribution, from a particular 
decade of modes, to the relaxation of the final tube length. The curve 
was produced by performing a sum over mode amplitudes such that 
if a mode p < pc then it had its swollen amplitude, and if p > Pc then 
the mode had its Gaussian amplitude. The gradient of the resulting 
graph (L against log Pc) plotted against log Pc is shown here. The mode 
corresponding to the tube diameter is indicated 
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Figure 8 A plot of the current tube length L(t) relative to the tube 
length at equilibrium in the melt L¢_ during polymerization. The 

4 ' ' ~ '  3 parameter values are NA= 10 , N s ( ~ ) = 1 0  , a = 5 ;  and zl/Zpo]= 10 
where fl = -8  to 0 for the curves from top to bottom. The parts of the 
curve above the line L(t)L~q=l represent tube length (adhesion) 
enhancement over that of the melt 

this analysis to represent a particular mode of polymer 
A as a blob of m monomers, m = NA/P, so that there are 
p blobs per mode. We make the conjecture that the 
magnitude of the surface perturbation upon a mode is 
proportional to the fractional number of blob surface 
contacts. For a chain of p blobs the fractional number 
of surface contacts is ,,~(p/R3)R2(1/p)~p -v. Thus, for 
both swollen and Gaussian chains the low modes are 
perturbed more than the high modes. 

For  the swollen chain, the number of surface contacts 
will be a factor (NA) - m °  less than for the Gaussian 
polymer of the same NA, if only the normal component 
of the end-to-end vector is perturbed. However, owing to 
the nature of the excluded-volume interaction, the 
components parallel to the surface will also be affected. 

We predict here that the surface affects the lower modes 
of the initial conformation of the swollen chain. Secondly, 
in the scenario of unentangled dynamics, the high modes 
that dominate the relaxation and subsequent conforma- 
tion of the tube length will suffer only a small perturba- 
tion from the surface. Thirdly, in the scenario of entangled 
dynamics, the initial tube length will be increased as this 
is low-mode-dependent. Relaxation will be unaffected by 
the surface, as this will be screened by the tube. 

So, for the purposes of adhesion, the effect of the surface 
is well approximated by our choice of normal modes, 
without further explicit constraints. This is an unusual 
situation and for example would not be the case if we 
were to calculate density properties. 

DISCUSSION 

Let us now imagine a practical scenario for which we 
can apply our theory. Consider a diblock copolymer with 
a small block that bonds to a silica surface and the 
other block being high-molecular-weight poly(methyl 
methacrylate) (PMMA). A silica plate is placed in a dilute 

solution of the copolymer (c < c*), which sticks on to the 
surface like hard spheres. A matrix is then imposed on 
the surface by either melt welding or polymerizing the 
solvent. The equilibrium surface coverage of the swollen 
copolymers, and thus the interface tube coverage, will 
be, to within a geometric prefactor: 

a ,,~ 1/N~/5 (33) 

Given that, for PMMA, NA can be typically ~ 104 and 
the monomer length ~ 1 0 - 1 ° m ,  then we can expect 
a,-~1015m -z.  In comparison, if we consider a planar 
interface through bulk PMMA there would be ~ 1018 
effective chain crossings per square metre iv. Thus it is 
clearly the case that the number of chains involved in 
possible pull-out processes (and thus the energy dissipa- 
tion) on the silica is very much smaller than in the bulk 
and thus here we choose to neglect plastic deformation 
and crazing associated with the bulk. 

If we now initiate a crack along the PMMA/silica 
interface, the total fracture energy G will be to good 
approximation the van der Waals surface energy y, plus 
the unit-area pull-out energy Ep6. As the separation of 
a monomer from the silica surface and the translation of 
a monomer along a tube both break a van der Waals 
bond, using scaling arguments, the ratio Ep6/7..~N~/5. 
Thus for large N A the van der Waals surface energy can 
be neglected and the surface fracture energy is given by 
equation (33) and Table 1: 

~voaN~/5 
~ (34) 

G~Epa~ 2b2N e 

If we consider the two extreme cases of the tethered chain 
being swollen or Gaussian then: 

~voN~ 15 
G ~ - ~C..s = 0, ~,wol = 1 (35) 

2 ( b , a  3 -~)1/3 

For bulk P MMA  the tube diameter is measured to be 
17 monomer lengths is. Thus using equation (16) the 

maximum increase possible in G due to swollen con- 
formations is ,-~ (17) 1/3 ,-~ 2.5. 

With respect to the practicalities of rapid polymer- 
ization, we find by extrapolating PMMA diffusion data 
(at 390K) 19 that the Rouse relaxation time of an 
entanglement segment is %~0.1 s. Thus to see a signifi- 
cant increase in G due to swollen conformations, the 
timescale of polymerization and subsequent glassification 
must be of the order ~<0.1 s. A possible way to avoid 
this impracticality might be solvent polymerization below 
the glass transition of the PMMA, thus suppressing the 
Rouse dynamics of the attached chain. However, such 
reactions are often highly exothermic and sustaining a 
low temperature may be difficult. 

To verify the above predictions a silica plate with 
tethered chains could be prepared with both a melt 
welded and in situ polymerized matrix. A suitable 
procedure to test the silica/PMMA interface under 
fracture might be the four-point flexure test 2°. As well 
as a general increase in G, the sharp transition in G at 
low NA (ref. 21), associated with loss of entanglements 
for the attached chains, would be expected to occur at 
a lower NA for the swollen chains. 

C O N C L U S I O N  

The Use of surface-tethered polymers provides a useful 
way of greatly increasing the fracture energy of a glassy 
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polymer/sol id interface. We provide here a theory for the 
fracture energy for such an interface when the coverage 
is low and the at tached polymers are well entangled. In  
the regimes where the whole chain is pulled out  of its 
tube we expect to see an increase in the surface fracture 
energy if the bulk polymer  is rapidly polymerized in situ. 
In the extreme case where the polymerizat ion is com- 
pleted before any significant mot ion  of  the at tached chain, 
the fracture energy will increase by a factor (a/b) 1/3. This 
effect could explain anomalies in fracture energies where 
interfaces have been prepared using different techniques. 

With regards to using the effect to strengthen inter- 
faces, careful considerat ion would have to be given to 
how long-timescale mot ion  in glassy polymers would 
affect the ' frozen'  non-equil ibrium conformation.  

It would be useful to have a value for the non-diffusive 
monomer ic  friction coefficient ( for the glassy phase so 
as to make numerical calculations of  the surface fracture 
energies. 
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